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ABSTRACT: A one-dimensional phenomenological constitutive model, representing the nonlinear viscoelastic behavior of polymers is

developed in this study. The proposed model is based on a modification of the well-known three element standard solid model. The

linear dashpot is replaced by an Eyring type one, while the nonlinearity is enhanced by a nonlinear, strain dependent spring constant.

The new constitutive model was proved to be capable of capturing the main aspects of nonlinear viscoelastic response, namely, mon-

otonic and cyclic loading, creep and stress relaxation, with the same parameter values. Model validation was tested on the experimen-

tal results at various modes of deformation for two elastomeric type materials, performed elsewhere. A very good agreement between

model simulations and experimental data was obtained in all cases. VC 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 42141.
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INTRODUCTION

Because of the extended use of polymeric materials in a variety

of applications over the last decades, a thorough understanding

of their mechanical properties is a crucial matter in order to

design the appropriate materials. The mechanical behavior of

polymeric structure is mainly governed by rheological (time

dependent) effects, and therefore the prediction of their inelastic

mechanical behavior, in terms of monotonic and cycling load-

ing, as well as creep and relaxation, is of great importance. The

classical linear theory of viscoelasticity1,2 has adequately

described the creep, relaxation and loading-rate dependence of

polymers. This theory can be presented by two major forms:

hereditary integrals or differential forms. This well-known

theory, however, is limited to narrow loading rate and tempera-

ture regimes, while polymeric materials demonstrate a nonlinear

response at relatively small strains.

The most general multiple integral constitutive relation for a

nonlinear viscoelastic material is given by Green-Rivlin theory.3

The complexity of this model and the large amount of experi-

mental data, required to determine the material parameters,

resulted in a very limited use. Significant works related to more

applicable models for nonlinear viscoelasticity have been devel-

oped.4,5 The modified superposition principle was first intro-

duced by Leaderman in 1940,6 and hereafter, a number of

physical and semiempirical single integral constitutive relations

have also been proposed by Caruthers et al.7 Progress has been

made in developing mathematical models for the small strain

regime under a specific narrow spectrum of strain rates,8 while

much less progress has been made for multi-axial finite defor-

mation response under a wide range of strain rates and temper-

atures, from a continuum point of view. 9 A thermodynamically

consistent theory of nonlinear viscoelastic and viscoplastic

materials was developed by Schapery.10 This model considers

the nonlinear viscoplastic response of materials as a particular

case of nonlinear viscoelasticity corresponding to infinite retar-

dation times. Experimental methodology for complete material

characterization in the framework of this model was presented

by Megnis and Varna.11

Numerous investigations have been focused on the nonlinear

viscoelasticity12–15 and viscoplastic response of polymers.16–19

This response is strongly rate and temperature dependent and

thermomechanically prehistory of the material dependent. An

interesting paper dealing with the long-term material perform-

ance in short-term stress relaxation tests on polycarbonate has

been published. 20 However, until now, all these aspects of

deformation behavior have been treated separately. A number of

interesting approaches deal with nonlinear viscoelastic behavior,

using integral representation with multiple relaxation times,

stress dependent, or using state variables related to the free vol-

ume.21 In a previous work,22 a theoretical treatment is pre-

sented, which takes into account the viscoelastic path at small

strains and the viscoplastic one at higher stresses, proved to be

capable of describing the main aspects of mechanical response

of glassy polymers, i.e. nonlinear viscoelasticity during creep
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procedure, and monotonic loading. In recent works23,24 the

nonlinear viscoelastic/viscoplastic response of polymeric materi-

als, in terms of monotonic loading and creep is described by a

new model within the concept of transient network, introducing

the nonlinearity by a stress dependent term of the activation

energy, while the viscoplastic response is successfully analyzed

by a proper kinematic formulation.

On the other hand, modeling large deformations in polymers

was made by Haupt et al.25 and Ehlers and Markert.26 In addi-

tion, micromechanics models were proposed and analyzed,27–29

being, however, difficult in use.9

Therefore, studying the polymer’s inelastic behavior in terms of

creep, stress–relaxation and monotonic loading, and its further

implementation in polymeric composites is still a very interest-

ing topic.

A matter of considerable interest is the nonlinear viscoelastic

response exhibited by elastomers. Elastomeric materials, are gen-

erally used as shock absorbers because of their low modulus

and high damping characteristics.30,31 Especially elastomers of

type Hydrogenated Nitrile Butadiene Rubbers (HNBR) are char-

acterized by enhanced mechanical properties and retain these

properties after long-term exposure to heat, oil, and fuel.30,31

Therefore, they are widely used in the automotive industry for a

variety of applications. They are also used as sealing materials

in oil exploration and its processing. Because of their high

damping characteristics, elastomers are increasingly used in

applications that are subjected to shock, impact, and vibrations.

Measurements of tensile creep and stress relaxation response of

a dielectric elastomer, which is a widely researched electro-active

material for actuator applications, are presented in.32 Power

law-based models were proved to satisfactory predict of creep

and stress relaxation behavior. For all the above reasons, insight

of the mechanical behavior of elastomers over a wide range of

strain-rates and modes of deformation may be a useful tool for

material design.

In the work by Khan et al.,9 a simple phenomelogical visco-

elastic model is introduced to describe the time and tempera-

ture dependent mechanical properties of elastomeric type soft

polymers under finite deformations. Uniaxial experimental data

of stress–relaxation and monotonic loading at various strain

rates were successfully analyzed,9 considering that the material

under investigation exhibits mainly viscoelastic behavior, with

the viscoplastic one being negligible. To this trend, the aim of

the present work, is to develop and analyze a nonlinear visco-

elastic model, for the characterization of the rheological

response of polymers. It has been shown that the proposed

model is capable of describing the main aspects of viscoelastic

behavior of polymers, namely creep, stress–relaxation, mono-

tonic loading, as well as cyclic loading and step-relaxation test-

ing. Experimental data of the aforementioned modes of

deformation, performed in previous studies for elastomeric

materials at moderate and large deformations were employed to

test the model’s capability.

MODIFIED STANDARD SOLID MODEL

Development and Constitutive Analysis of the Nonlinear

Viscoelastic Model

A very popular viscoelastic model, composed of a Maxwell ele-

ment (linear spring and dashpot in series) in parallel with a lin-

ear spring33 is the so-called standard linear solid. In the present

work a modified standard solid model is adapted and shown in

Figure 1. It is composed by a nonlinear spring, designated by

E1, in parallel with a nonlinear Maxwell element, consisted by a

linear spring (constant E2) in series with an Eyring type dash-

pot. The nonlinear spring E1 is assumed to be dependent on

strain eðtÞ, according to the formula:

E1ðtÞ5g1eðtÞ-g2 (1)

where g1, g2 are constants that need to be calculated. Given that

E1 depends on strain, which evolves with time, the physical

meaning of eq. (1) is that spring’s constant E1 is a strain hard-

ening parameter. On the other hand, the strain rate for the Eyr-

ing dashpot is given by the following equation:33

_e5A sinh½b ðr-e E1Þ� (2)

where A, b are constants, e is the total strain, and r is the total

stress imposed. Constant A is a pre-exponential factor and b is

equal to b/RT, where b is the activation volume for the molecu-

lar event,33 R the gas constant and T is the temperature.

The one-dimensional constitutive equation for the viscoelastic

model of Figure 1 is thus given by

_r5e _E 11 _e ðE11E2Þ2A E2sinh ½b ðr-e E1Þ� (3)

Moreover, for a stress relaxation experiment, by substituting in

the constitutive equation (3), the strain rate _e equal to zero, we

obtain the stress evolution with time as follows:

_r52A E2 sinh½b ðr-e E1Þ� (4)

RESULTS AND DISCUSSION

Monotonic Loading, Stress–Relaxation, Cyclic Loading

Experiments in Adiprene L100

The proposed nonlinear viscoelastic model has been imple-

mented to a polymer, namely Adiprene L100, studied in a previ-

ous work by Khan et al.9 The model’s flexibility has been tested

for stress–relaxation at various strain levels, monotonic loading

in a variety of strain rates, and cyclic loading at room tempera-

ture. The cyclic loading tests involve a monotonic loading, a

stress–relaxation for a specific time period of 2 hours and a

monotonic unloading. The afore-mentioned experiments were

performed and adequately analyzed by Khan et al.9

In Figure 2 the stress–relaxation experimental curves of

Adiprene-L100 at different levels of strain at the engineering

Figure 1. Schematic presentation of the modified standard solid model.
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strain rate of 1 s21 are illustrated. In this Figure the compres-

sive stress and strains are assumed positive. In the same Fig-

ure the model simulated results, obtained by numerically

solving eq. (4), are also depicted, exhibiting a good correla-

tion between model simulation and experiment. Proceeding

further with the compressive stress–strain experimental results

of the same polymer, at various strain rates, namely 1025,

1024, 1022, and 1 s21, the comparison between model simula-

tion and experimental data are presented in Figure 3. The

model simulation was performed following the constitutive

eq. (3), while a satisfactory agreement with experiments is

observed.

To further check the model’s capability in describing the visco-

elastic response of the materials, simulations were performed

for a more complex experimental procedure9 as follows. A con-

stant compressive strain rate of 1 s21, followed by a 2 h stress–

relaxation process around 0.15, 0.30, 0.45, and 0.60 strain levels.

The corresponding experimental curves are depicted in Figure

4, along with the model simulations, indicating again a good

approximation between theory and experiments. Moreover, The

true stress–strain for relaxation experiments at different strain

levels at a strain rate equal to 1 s21,9 are shown in Figure 5.

These curves, which actually represent cyclic testing, are shown

in comparison with the model simulations.

Because of the nonlinearity of the involved equations, it was

not possible to have a closed from solution for all the deforma-

tion procedures applied. Therefore, the model calculations were

performed numerically, the using the software Mathematica,

and the differential equations were solved by applying small

time steps, while the convergence of the solutions was moni-

tored in all cases. It should be emphasized that the experimental

data of all types of deformation were simulated by the same val-

ues of model parameters.

The values of model parameters, namely g1, g2, E2, A, and b are

presented in Table I. These values were calculated by back step

analysis. Using a code through Mathematica, we tried different

values for each parameter to choose the most appropriate values

for describing the behavior of the material. Starting with stress–

relaxation, the calculation of the parameters has been done for

the best fitting of the experimental data, and hereafter with

minimal corrections, the monotonic and cyclic loading data

were simulated. The simulation of unloading stress–strain

curves was possible with a different value of constant g1

Figure 2. True stress–relaxation curves of Adiprene-L100 at various strain

levels (compressive stress and strain are assumed positive). Points: Model

simulations. Solid lines: Experimental data after Khan et al. 2006.

Figure 3. True compressive stress–strain curves of Adiprene-L100 at vari-

ous strain rates. Points: Model simulations. Solid lines: Experimental data

after Khan et al. 2006.

Figure 4. Multiple step relaxation experiment at 1 s21 strain rate, with

2 h relaxation period of Adiprene-L100. Compressive stress and strain are

assumed positive. Points: Model simulations. Solid lines: Experimental

data after Khan et al. 2006.

Figure 5. True compressive cyclic stress–strain curves of Adiprene-L100

for relaxation experiments at different strain levels at a strain rate of

1 s21.
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(designated with a star in Table I), which seems reasonable,

because of the stress softening of the material, observed in the

experimental curves.

It must also be noted that the number of five required parame-

ters, is quite lower than that in previous works,9 while the

model appears to be capable of describing various modes of

deformation in unified manner.

Monotonic Loading, Creep, and Stress–Relaxation

Experiments of HNBR at Large Deformations

The introduced modified standard solid model was further

applied in another material type, namely a HNBR, and a differ-

ent set of experiments, namely monotonic loading, creep at var-

ious stress levels and stress relaxation at various strain levels, all

performed at room temperature in Ref. [30].

Quasi-static monotonic compression experiments were per-

formed in Ref. [30] for HNBR at three different strain rates,

namely 100, 1022, and 1024 s21. The experimental procedure is

presented in detail in the work by Khan et al.30 A pronounced

strain rate sensitivity is of HNBR is observed in the experimen-

tal stress–strain results, as shown in Figure 6. In addition, the

material’s response was proved to be purely viscoelastic, with

the viscoplastic strain to be ignored, as it is mentioned in

Ref. [30].

In the same work, the creep response of HNBR was found to be

strongly dependent on the strain rate and strain level. In the

present work, the creep curves of HNBR,30 with the applied

stress being imposed at a constant strain rate equal to 100 s21

were selected and analyzed. The stress level, required for the

creep strain evolution, was estimated from the corresponding

stress–strain curves. In Figure 7 the creep strain versus time, at

various stress levels is illustrated. A fairly good agreement

between experiment and modeling is observed.

Moreover, the stress–relaxation experiments performed at room

temperature, at strain levels equal to 0.25, 0.50, and 0.75 are

presented along with the model predictions in Figure 8, reveal-

ing a generally quite good agreement. For all modes of defor-

mation the simulations were made with the same parameter

values, which are shown in Table I.

CONCLUSIONS

In the present study a new nonlinear viscoelastic model is devel-

oped. The proposed one dimensional model is based on a mod-

ification of the three element standard solid, where the dashpot

is replaced by an Eyring dashpot, and the elastic spring constant

is replaced by a nonlinear one, which is strain dependent.

The model’s validity was tested on the experimental data of two

polymers, of elastomeric type, namely Adiprene L100 and

Table I. Model Parameter Values

Model Parameters

Material g1

(MPa) g2

E2

(MPa)
A
(s21)

b
(m3/J)

Adiprene-L100 4.47 0.41 3.5 1020.8 0.05

2.9*

HNBR 3.2 0.20 0.5 1020.01 0.03

* the value of g1 at the unloading

Figure 6. True stress–strain curves of HNBR at various strain rates.

Points: Model simulations. Solid lines: Experimental data after Khan et al.

2010.

Figure 7. True creep strain–time curves of HNBR at room temperature,

with the stress imposed at a strain rate of 100 s21. Points: Model simula-

tions. Solid lines: Experimental data after Khan et al. 2010.

Figure 8. True stress–relaxation curves of HNBR at room temperature, at

three different strain levels, with the stress imposed at a strain rate of

1024 s21. Points: Model simulations. Solid lines: Experimental data after

Khan et al. 2010.
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HNBR. The constitutive model was numerically solved for a

variety of complex loadings at moderate and large deformations,

such as monotonic and cyclic loading, creep, stress–relaxation,

and stress–relaxation step experiments, at various strain rates. A

good agreement between model predictions and experimental

data was obtained, with the same parameter values. It must be

noted that the number of required parameters is lower than

that in previous works.

Therefore, the introduced nonlinear viscoelastic model, with the

assumption of a strain dependent nonlinear spring, appears to

be capable of describing the main aspects of nonlinear viscoelas-

ticity in a unified manner.
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